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1. Introduction,
Newton's Method! is one of the most powerful methods for
the solution of n simultaneous nonlinear equations in n

unknowns. When applied to the equations
Vi(yj) =0 (i, = 1,2,..., n)

the method takes the form

_1(

(84 ()

g yuy )y g = 0,1,2,... (1)

where yj and V are components of the column vectors y

i
and V vrespectively; A(y) 1s an nxn matrix whose

(2) denotes the &-th

(i,j)-th element is avi/ayj; and y
iterant of y. One of the characteristics of Newton's Method
is its quadratic convergence rate, provided the initial guess
y(o) is "sufficiently close" to the solution y¥. Further
details are given in the Kantorovich Theorem!.

Recently, a generalized form of Newton's Method, under
the names of quasilinearization or generalized Newton-Raphson?,
has been applied in the solution of the two-point boundary value
problems arising in trajectory optimization. The basis of the
generalized Newton-Raphson procedure 1s the linearization of

the differential equations describing the trajectory (state

variables and Lagrange multipliers). Roberts and Shipman? show




that the perturbation method of Goodman and Lance“ is also a
form of the general Newton's Method.

It is the purpose of this note to show how Newton's
Method, Eq. (1), can be directly applied to the two-point

boundary value problems arising in trajectory optimization.

2, Varidtional two-point boundary value problem.
Suppose that a trajectory optimization problem is given

in the form of minimizing the functional

tf
I = G(X(tp),t,) +fQ(X,U,t)dt (2)
0
subject to the conditions that
Si(X(O)) = 0 (1 = 1,2,..., @ < n) (3)
Rj(X(tf),tf) = 0 (j = 1,2,..., r < n+l) (4)
X = % = £(X,U,t) (5)
where X = (Xl, Xosenes Xn)T is the state and U = (Ul’Ug"">
U )T is the control. It is known that the solution of this

m

problem is given in terms of the differential equations

X = £(X,U,t) (6a)




P= 30" -(HT - gx,u,p, 1) (6b)

where U 1is determined from the equation

_ T 3f . aQ
and P = (Pl,Pg,...,Pn)T Assume that the mxm matrix

3%(PT %% + %%) is positive definite. Then one can solve for

U 1in terms of X,P, and t, and then substitute for U in Eq.

(6) to obtain

Sda
Mt

F(X,P,t) (7a)

g2(X,P,t) . (70)

e
fl

The natural boundary conditions from the variational problem
supply (1) n Dboundary conditions at t = 0, with n of the
Xj and Pi unknown, (2) n+l boundary conditions at tf, with

tf and n of the Xi and Pj unknown. Therefore, the

boundary conditions can be written as
5,.(X(0),P(0)) =0 k=1,2,..., n

ﬁj(x(tf),P(tf),tf) =0 j=1,2,..., ntl



The problem could be solved if the correct values of the unknowns
at t = 0 and the value of the terminal time tf were known.

Let these unknowns form the (n+l)-vector C, with Cn+l = tf
A change of independent variable will be made using a device
due to Long?>.

Let t = C S (0 < s < 1). Then the differential

equations (7) can be written as

ax -

ds = Cnsy T(XELCHyys) (8a)
dpP _ -

ds = Cns1B8X6P, 0 08) (8b)
0 <s <1

and the boundary conditions become

X, (0) = J;(Cq,Ch,.05C)
i=1,2, ,n
P,(0) = J4,,(Cy5CosentsCp)
Rj(X(l),P(l),Cn+l) =0 (j = 1,2,..., n+l)
. . T _ T T .
Introducing the notation Y~ = (X ,P") the two-point boundary

value problem becomes



%% = F(Y,C,s) , 0 <s <1
Y(0) = J(C)

V(Y(1),C) = 0

which is in form that can be used for solution by Newton's

Method. Notice that C and V have the same dimensionality.

3. Solution by Newton's Method.
A two-point boundary value problem can be stated as
follows. Determine the constant vector B so that the vector

Z(t) satisfies the following equations on the interval 0 < t < 1

Z(0) = K(B) (9)
5 - dZ _

z = §& = F(Z,B,t) (10)
L(Z(1),B) = 0 (11)

where K, Z and F are column vectors of dimension n; L
and B are column vectors of dimension m.

Equation (11) represents m simultaneous equations in the
, since Z(l) can be expressed as a function of

m unknowns Bj

B from Eq. (9) and Eq. (10). Apply Newton's Method [Eq. (1)]




to Eq. (11) to obtain

p(#*+1) - p(8) | p-1g(8)y () (12)

where

L) o ez,

_ 9L 97 ., oL
A(B) = (ﬁﬁ*‘ "gB') _ (13)
t=1

oL . . . .
37 1s an mxn matrix whose (j,1)-th element is BLJ./BZi 5
%% is an nxm matrix whose (i,k)-th element is aZi/aBk ;

%% is an mxm matrix whose (j,k)-th element is aLj/aBk H
and (j,k =1,2,..., m), (i =1,2,..., n) . The matrices

3L/ 3Z and 3L/3B can be obtained from Eq. (11) by taking the
appropriate derivatives. The matrix 3Z/3B 1is obtained by
writing Eq. (10) in integral form and then differentiating

with respect to B. Thus
t

z(t) = z2(0) +fF(Z,B,s)ds (14)
0

and

t
Z(t) _ 3z (0) OF 32 oF
Sl F +f(-a—-——+—)ds. (15)
0



If Eq. (15) is differentiated with respect to t then the

matrix 3Z/38B will satisfy the matrix differential equation

d 37 _ oF a7 . oF
at 38 - 3Z 3B T 3B (16)

: 22(0) _ oK
; B 3B

(17)

where

3F . . . . .

37 1s an nxn matrix whose (i,j)-th element is aFi/BZj 5
%g is an nxm matrix whose (i,k)-th element is aFi/aBk H

i,j = 1,2,..., n and k =1,2,..., m

Suppose that an initial guess at B 1is made, Z(0) is
computed from Eq. (9), and Eq. (10) is integrated from t = 0
to t = 1. The value of L(Z(1),B) will generally not be
zero., (A trajectory for which L # 0 will be called a nominal
trajectory.) Equation (16) is integrated from t = 0 to
t = 1, with initial conditions given by Eq. (17). In Eq. (16)
the matrices (3F/3Z) and (3F/9B) are evaluated on the
nominal trajectory. Then (23Z/3B) will be the rate of change
of Z due to a change in B, on the nominal trajectory. Thus
(3Z/9B) at t =1 4is obtained, A(B) can be evaluated, and a
new value of B can be obtained from Eq. (12) provided A(B)
is nonsingular.

If the differential equations (10) are highly nonlinear then

the change in B, as given by Eq. (18), may be too large.

Heee——



b= - a0t (2) (18)

(2+1)

This occurs when the norm of L is greater than the norm

of L(Q). In this case the following scheme is employed.

B(5L+1) (2)

= B + ab (19)
where 0 < o < 1. The "best” value of o must be determined
empirically for each iteration. The use of o 1in the
computational algorithm is a realization of Theorem 3 in the
paper by Moore®.

The computational algorithm is summarized as follows. Set
£ = 0 and choose B(O).
(I) Integrate Eq. (10) from t =0 to t =1 with initial

conditions given by 7Z(0) = K(B(l)),

(I1) Determine L(z(1),B'*’) = .(*) and the norm of L(%),
denoted by HL(Z)H. If HL(Q)H is less than some preassigned
¢ then B(Y) is the accepted solution. If HL(z)H > ¢ then

(1) if & =0 go to step (IV)

(2) if ¢ > 0 go to step (III)

(III) Compare HL(R)|| and the previous norm, W.

(1) |L(Z)H > W . Decrease o and form B = ¢ 4 ap.

Go to step (I).
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(2) LYY < Ww. Go to step (IV).

(IV) Set C equal to B(l), o equal to unity and W equal to

L)

(V) 1Integrate Eq. (16) from t =0 to t = 1 with initial

(2)
condition given by azgg) _ BK(%B )

(VI) Form A(B(2>) according to Egq. (13) and solve the linear
system  A(B*)p = - LY for b,

(2+41) L)

(VII) Form B = B( + ab. Add 1 to the value of L. Go
to step (I).

This computational algorithm was programmed in FORTRAN
for the CDC 6600 Computer at the University of Texas. The
problem given in the next section was used to test the

effectiveness of the algorithm.

4, Example problem.

A low-thrust Earth-Mars trajectory is sought. The
vehicle is assumed to travel in an inverse square gravitational
field. The orbit of Mars 1s assumed to be an ellipse with an
eccentricity of e = 0.093393, a semi-major axis of a = 1.523691
AU (astronomical units), lying in a plane which is inclined to

the ecliptic at an angle of i = 0.032289 radians. The equations
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of motion which describe the transfer trajectory are expressed

in a helilocentric rectangular cartesian coordinate system whose
Xu-axis coincides with the line of ascending node for the Mars

orbit. The X5—axis lies in the Ecliptic plane and the X6—axis
coincides with the angular momentum vector of the earth with

respect to the sun. Letting (Xl,X2,X3) and (XM,X X6) be

5’

the velocity and position components respectively in the

(XM,XB,X6)-coordinate system, the equations of motion are

! -3
I - -vyR Xu + QcosUlcosU2
dX2 -3
3 - -YR X5 + QcosUls1nU2
dXx
3 - -3 .
I -YR X6 + 981nU1
qu -
dr 1
dX5 -
dr 2
dX6 -
ar 3

where R™ = Xi + Xé + Xé and © =B8c/(l-Br) on the interval

0 21 < To-
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For the units chosen in the problem:

with

time is days
position is in AU
velocity is in AU/day

mass 1is in vehicle mass

—
I}

(@]
1l

(12:00 noon May 9, 1971)
8 = 0.00108 vehicle mass/day
¢ = 0.04536L49854 AU/day

y = 0.000296007536 AU3/day?

The control angles are shown in Fig. 1. The initial conditions

at © = 0 are
Xl(O) = -0.0003455906
X2(O) = -0.0171986836
X3(O) = 0.0
XM(O) = —0.9998
X5(O) = 0.02009
X6(O) = 0.0
The terminal conditions are X.(rf) - Y.(rf) = 0 i=1,2,...,6
dv, - * *
. _ i .o
with Yi = g7 i 1,2,3



FIGURE

CONTROL ANGLES
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The position of Mars at time =+t 1s given by

Yy(t) = ky9Dy + kq,D,

YS(T) = k21Dl + k22D2

Y6(T) = k3lD1 + k32D2

where k = COSw
k = -sinw

k21 = (cosi)(sinw)

k22 = (cosw)(cosi)
k31 = (sini)(sinw)
k32 = (cosw)(sini)
D1 = a(cosE - e)
5 1/2
D2 = a(sinE)(1l-e7)

€
]

5.8541335 , the argument of perihelion of
Mars at «t = 0.

E 1s the eccentric anomaly of Mars. It satisfies Kepler's

equation (1>0)

3 1/2
E - e(sinE) = t(y/a>) + E0 - e(sinEO)

Ey = 4.250885

It is required that the vehicle arrive at Mars with maximum
mass. Therefore the quantity B8t, -~ 1 1is to be minimized.

f

The equations governing the Lagrange multipliers are



dPi
ar - “Fiss
i =
dp.
+ -
- -5
h = =3yR [PlX4 + P, X5 + P3 X6]

The controls U and U2 are given by

s1n(Ul) = —P3/A
cos(Ul) = §/A
sin(Ug) = —P2/6
cos(U2) = —Pl/a
2 2 2
AT = +
8 P3
2 _ .2 2
8 = Pl + P2
Thus Ul and U2 can be eliminated

equations in X. In addition to the 6

conditions given by Xi(rf) - Yi(rf)
analysis gives the additional boundary

to 1

£ being free)

] Py -3 =0 at o«

The unknowns are Pi(O), (i =1,2,..., 6), and

15

from the differential
terminal boundary
0 the variational

condition (corresponding

rf. Make the



change of variable =
Pi(O) = Bi (1 =1,2

with 7, = X, ,

i 1 Zi+6

equations become (Z

7. = -B
i

Zi43 =
Zive T
2i49 =

for i

where R2 = zﬁ

2 2
= 7

M 7

h =

7

+

+

[vZ

i+3

The initial conditions are

Zi(O) =

Zi+6(O>

X, (0)

= B,

1

16

(0t £1), and let
In the notation of Section 3,

=1,2,..., 6) the differential

BCZ: 46

-3 _
R -+ Z1-3B7t5v] = Fy

‘3YR_5[Z7Zu + Z8Z + Z Z6]

5 9
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The terminal conditions at t = 1 are
Li = Zi(l) - Yi(B7) = 0 1=1,2,..., 6
6 day.
L= l l)=0

B+ ) 7., (F.BD o=
7 16914677177 TdB,

In the numerical solution of this problem the following initial

values were guessed

B, = 0.3455906

B, = 17.1986836

By = 0.0 (1= 3,4,5,6)
B7 = 184.0 .

These values of Bl’ B2, B3 aligned the initial thrust direction
along the vehicle's velocity vector.

The factor o was determined by the following procedure.
A number r»>1 was chosen; then o was set equal to r-k for
k =0,1,2,..., p , where p 1is the least integer for which
HL(2+1)H < lm(2)||. (Other procedures such as a Fibonaccian
search are possible.)

Several different computer runs were made. In each run
the process was terminated whenever HL(Z)H became less than

10’11. The error norm was chosen as
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T 5, 1/2
Il = ¢ 1
i=1

Convergence curves for four different values of 1r are
shown in Fig. 2. Each of the four curves contains a plateau
region in which the terminal error norm decreases very slowly.
In this region some of the Bi (1 <1 < 6) were negative
(note that the converged values, B;, given below, are positive).
At the end of each plateau region, all B; were positive.
Further data is given in Tables 1 and 2. Table 1 shows that
the speed of computation is dependent on the choice of r.

The converged values B¥ are

J
B¥ = 14.065205938
B§ = 17.179740719
B§ = 1.7012931523
Bﬁ = 0.39534671015
BY _  .18375894864

0.0021643563219

(we}
Ok
L]

los]
1%k
i

175.46074200

The Earth-to-Mars transfer is accomplished in 175.460742 days.



Table 1: Convergence Data
Computing Time

r Iterations in Seconds

2.0 41 308.502

3.0 46 289.495

3.5 23 138.029

4,0 31 187.668

Table 2: Last ten iterations for r = 3.5
Iteration Terminal Error
Number Norm

14 1.731x107%
15 1.627x10"71
16 1.535x107t
17 1.323x107%
18 7.909x107°
19 1t,Ll25><10_2
20 4.21“*10““
21 70765><10'7
22 8.951x10"11
23 1.286x10™

19
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5. Conclusions.

Formulating a trajectory optimization problem in the
notation of Section 3 allows one to make direct use of Newton's
Method. The resulting trajectory optimization scheme is a
rapidly converging computational procedure as was shown in the
example problem. Further extensions of this method to problems
with intermediate boundaries (stages) will be treated in a

later report.
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